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Mean-flow scaling of turbulent pipe flow
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Measurements of the mean velocity profile and pressure drop were performed in a fully
developed, smooth pipe flow for Reynolds numbers from 31¬10$ to 35¬10'. Analysis
of the mean velocity profiles indicates two overlap regions: a power law for 60!
y+! 500 or y+! 0±15R+, the outer limit depending on whether the Ka! rma! n number R+

is greater or less than 9¬10$ ; and a log law for 600! y+! 0±07R+. The log law is only
evident if the Reynolds number is greater than approximately 400¬10$ (R+" 9¬10$).
Von Ka! rma! n’s constant was shown to be 0±436 which is consistent with the friction
factor data and the mean velocity profiles for 600! y+! 0±07R+, and the additive
constant was shown to be 6±15 when the log law is expressed in inner scaling variables.

A new theory is developed to explain the scaling in both overlap regions. This theory
requires a velocity scale for the outer region such that the ratio of the outer velocity
scale to the inner velocity scale (the friction velocity) is a function of Reynolds number
at low Reynolds numbers, and approaches a constant value at high Reynolds numbers.
A reasonable candidate for the outer velocity scale is the velocity deficit in the pipe,
U

CL
®U{ , which is a true outer velocity scale, in contrast to the friction velocity which

is a velocity scale associated with the near-wall region which is ‘ impressed’ on the outer
region. The proposed velocity scale was used to normalize the velocity profiles in the
outer region and was found to give significantly better agreement between different
Reynolds numbers than the friction velocity.

The friction factor data at high Reynolds numbers were found to be significantly
larger (" 5%) than those predicted by Prandtl’s relation. A new friction factor relation
is proposed which is within ³1±2% of the data for Reynolds numbers between 10¬10$

and 35¬10', and includes a term to account for the near-wall velocity profile.

1. Introduction

In the experiment presented here, a fully developed, smooth pipe flow was studied
for Reynolds numbers from 31¬10$ to 35¬10', where the Reynolds number Re is
based on the average velocity U{ and the pipe diameter D. The highest Reynolds
number investigated is an order of magnitude larger than the previous highest value
achieved for mean-flow measurements in a smooth pipe (Nikuradse 1932; Dickinson
1975). The experiments were specifically undertaken to investigate the scaling of the
mean velocity profile and friction factor. Since we come to conclusions that differ from
the generally accepted scaling arguments, some historical background is necessary.

Most theoretical treatments for the scaling of pipe flow start by dividing the flow into
a near-wall and core region. For each region, a length and velocity scale may be
defined. The velocity scale in the near-wall region is typically taken to be the friction
velocity uτ given by

uτ ¯ (τ
w
}ρ)"/#, (1)
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where τ
w

is the wall shear stress and ρ is the density. The length scale associated with
the near-wall region is then the kinematic viscosity ν divided by the friction velocity,
ν}uτ. For the core region, the velocity scale is also typically taken to be the friction
velocity, although this has long been a source of controversy (Zagarola & Smits 1997;
George, Castillo & Knecht 1996), and the length scale is taken to be the radius R.

The ratio of length scales gives the Ka! rma! n number (R+¯Ruτ}ν) which for a pipe
is a unique function of Reynolds number. As the Reynolds number changes, the shape
of the mean velocity profile, or equivalently, the relative fraction of the flow occupied
by the near-wall and core regions, also changes. If R+ is large enough, it is usually
assumed that the interaction between inner and outer regions vanishes because of the
disparity of length scales, and consequently, independent similarity solutions may exist
for each region.

As originally proposed by Prandtl (1933), the near-wall velocity profile depends on
the distance from the wall, the wall shear stress and the fluid properties. That is,

U¯ f
!
(y, τ

w
, ρ,µ), (2)

where f
!
expresses the functional relationship, y is the distance from the wall and µ is

the dynamic viscosity. Dimensional analysis of (2) yields

U+¯ f
"
(y+), (3)

where U+¯U}uτ and y+¯ yuτ}ν. Equation (3) is known as the ‘ law-of-the-wall ’ and
is valid only in the near-wall region. It can be shown from the Navier–Stokes equation
that f

"
is linear near the wall, and we may expect that (3) is valid further from the wall

than the linear region but not into the core region (i.e. (3) will hold for 0! y+
iR+).

In the core region, von Ka! rma! n (1930) argued that the wall acts to retard the local
velocity below the maximum velocity in a way which is independent of the viscosity,
but depends on the distance from the wall, the radius of the pipe, the wall shear stress
and the density. That is, the velocity ‘defect ’ should scale according to

U
CL

®U¯ g
!
(y,R, τ

w
, ρ), (4)

where U
CL

is the velocity at the centreline and g
!
expresses the functional relationship.

Note that (4) does not depend on viscosity except through the wall shear stress.
Dimensional analysis of (4) yields

U+
CL

®U+¯ g
"
(η), (5)

where U+
CL

¯U
CL

}uτ and η¯ y}R. This functional relationship was first proposed by
Stanton in 1911 (Schlichting 1987) and is known as the ‘defect-law’. Equation (5) is
valid only in the core region where viscosity is not important (i.e. (5) will hold for
0i η! 1). If f

"
and g

"
are independent of Reynolds number, complete similarity

exists in each region; otherwise, incomplete similarity exists.
Millikan (1938) proposed that at large enough Reynolds numbers there may be a

region of overlap where both the inner and outer similarity laws are simultaneously
valid. This region exists for ν}uτi yiR or 1i y+

iR+. By matching the velocity
gradients found from (3) and (5), it follows that the form of the velocity profile in the
overlap region must be logarithmic. When expressed using inner scaling variables the
resulting equation is

U+¯
1

κ
ln y+­B, (6)
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where κ is known as von Ka! rma! n’s constant and B is a constant that depends on the
inner integration limit of the log law. In terms of outer scaling variables, the resulting
equation is

U+
CL

®U+¯®
1

κ
ln η­B*, (7)

where B* is a constant that depends on the outer integration limit of the log law. All
three constants, κ, B and B*, are empirical and have typical values of 0±41, 5±2 and 0±65,
respectively, and the log region is believed to exist for 50ν}uτ ! y! 0±15R. If the
constants are independent of R+, then complete similarity exists in the overlap region,
and by virtue of the derivation of this overlap region, complete similarity also must
exist in the inner and outer regions. The log law contants and the region of validity of
the log law will be investigated in detail in §§7–10.

The friction factor λ for a pipe is defined as

λ¯
®(dP}dx)D

"

#
ρU{ #

, (8)

where dP}dx is the mean streamwise pressure gradient which, for fully developed pipe
flow, is constant and is related to the wall shear stress by τ

w
¯ "

#
RdP}dx. Therefore,

λ¯ 8(uτ}U{ )#. (9)

The scaling of the mean velocity profile is related to the scaling of the friction factor
by the definition of the average velocity. That is,

08λ1
"/#

¯
U{

uτ

¯ 2&"

!

U+ 01®
y+

R+1d
y+

R+
. (10)

If the scaling of the mean velocity profile is known, then the scaling of the friction
factor is also known.

Prandtl proposed a friction factor relationship based on complete similarity of the
mean velocity profile (see Durand 1943). Prandtl integrated the log law (equation (6))
from the wall to the centreline to obtain

08λ1
"/#

¯
1

κ
ln 0Re 0 λ

321
"/#1­B®

3

2κ
. (11)

Prandtl rearranged this equation and adjusted the constants based on Nikuradse’s
(1932) friction factor data to obtain

1

λ"/#
¯ 2±0 log (Reλ"/#)®0±8. (12)

This expression is known as Prandtl ’s uni�ersal law of friction for smooth pipes which
Schlichting (1987) believes ‘may be extrapolated to arbitrarily large Reynolds
numbers, and it may be stated that measurements with higher Reynolds numbers are,
therefore, not required’.

Prandtl’s analysis assumes that the actual form of the velocity profile in the near-wall
and core regions is unimportant. In the near-wall region, the mass flux is negligible for
Reynolds numbers above C 100¬10$, and consequently, the error introduced by
neglecting the true form is probably small. In the core region, the error caused by
neglecting the deviation of the velocity profile from the log law (the ‘wake’) is expected
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to be significant. However, if the wake is independent of Reynolds number, then the
difference between the velocity given by (6) and (5) is independent of Reynolds number,
and when integrated across the core of the pipe, the result is a constant. The additive
constant in (12), therefore, also accounts for the mass flux in the core region of the pipe.
Consequently, Prandtl’s relation assumes complete similarity of the mean velocity
profile and moderately high Reynolds numbers. The scaling of the friction factor will
be further investigated in §6.

Despite the conventional wisdom embodied in the log law, there is still considerable
debate over the existence of a log law, the value of the log law constants and their
Reynolds number dependence, if any. Barenblatt (1993), for example, proposed a
power law with empirical constants that depend on Reynolds number for the velocity
profile in the overlap region. A comparison between Barenblatt’s theory and the
experimental data presented here is given in Zagarola, Perry & Smits (1997). Other
workers have attempted to explain an apparent Reynolds number dependence of the
constants using higher-order corrections to the classical log law. The work of Tennekes
(1968), Afzal & Yajnik (1973), Long (1979), and George, Castillo & Wosnik (1997) fall
into this category.

The lack of a consensus on the scaling in the overlap region, or even the existence
of an overlap region, can be partly attributed to the lack of adequate experimental
data. Although pipe flow has been one of the most extensively studied flows, it is
difficult to find data across a wide enough range of Reynolds numbers so that subtle
Reynolds number effects can become apparent and basic scaling dependencies can be
unambiguously established. Among the most commonly cited experiments in smooth
pipes are those by Stanton (1911), Nikuradse (1932), Deissler (1950), Laufer (1954),
Townes et al. (1972), Perry & Abell (1975), Dickinson (1975), and Toonder &
Nieuwstadt (1997). Of these experiments, the only one that covers a significant range
of Reynolds numbers is the one performed by Nikuradse which covers three orders of
magnitude in Reynolds number. Consequently, Nikuradse’s data have become the
metric by which theories have been established and judged.

Nikuradse’s data have also been the subject of intense scrutiny, and this scrutiny has
revealed inconsistencies and uncertainties in his data. The inconsistencies have been
well documented (Hinze 1964; Zagarola 1996), and will not be reviewed here. Instead,
we will attempt to quantify the uncertainties in his data by examining the random
errors in his measurements.

In his 1932 paper, Nikuradse reported 141 friction factor measurements and only 16
velocity profile surveys. The large number of friction factor measurements lends itself
to statistical analysis. The standard deviation between Prandtl’s friction factor formula
(equation (12)), which is based on a least-squares approximation of Nikuradse’s data,
and the data is approximately ³4% (95% confidence interval), and the largest
discrepancy exceeds ³6%. If we assume that the uncertainty in the average velocity
is negligible, then the uncertainty in uτ is no less than ³2%, half the uncertainty in the
friction factor data, since uτ}U{ £λ"/#. These uncertainties are quite large, and it is
doubtful that differences in log law constants or the difference between a log law and
a power law can be discerned without more accurate data. For example, (6) can be used
to show that the additive constant in the log law, B, varies by an amount ³0±4 (³8%)
at y+¯ 100 for a ³2% variation in uτ.

The inconsistencies and uncertainties in Nikuradse’s data underscore the importance
of a new experiment that permits accurate measurements over a large range of
Reynolds numbers. The results presented in this paper include measurements of the
mean velocity profile and pressure drop for 26 different Reynolds numbers between
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31¬10$ and 35¬10'. The strength of the conclusions formed from these results rests
on the uncertainties in the measurements, and therefore these considerations occupy a
significant fraction of this paper. The experimental facility is described in §2, the
measurements are described in §3, and the corrections to the measurements and the
uncertainty of the measurements are described in §4. For additional details on each, see
Zagarola (1996).

2. Experimental facility

A pipe flow apparatus was constructed to enable very accurate measurements across
a wide range of Reynolds numbers, up to very large values. High Reynolds numbers
were achieved at a moderate cost by using compressed air at ambient temperatures as
the working fluid, thereby decreasing the kinematic viscosity by over two orders of
magnitude as compared to air at STP. The maximum static pressure for these
measurements was 187 atm. The facility was closed loop and the test pipe was
contained inside high-pressure piping. The test pipe had a nominal diameter of
129 mm, a length of 202D and included two test sections for measurements of the
velocity profiles.

A diagram of the facility is shown in figure 1. The facility was filled with high-
pressure air supplied from an external reservoir (not shown). After filling, recirculating
flow was produced by an impeller located in the pumping section. The flow rate was
varied by changing the rotational speed of the impeller between 500 and 3700 r.p.m.
The rotational speed was controlled to better than ³0±25%. At the exit of the pump,
a water-cooled, shell-and-tube heat exchanger controlled the temperature of the flow.
By varying the coolant temperature, all measurements were performed at temperatures
between 295 K and 300 K. The temperature during a single survey varied by less than
³0±5 K. From the heat exchanger, the flow continued along the back leg of the circuit,
and after two 90° bends the flow entered a flow conditioning section.

The flow conditioning section consisted of two aluminium honeycombs and a
contraction with a 4:1 area ratio. The length-to-diameter ratio of the honeycomb was
eight which has been shown to virtually eliminate swirl and other lateral velocities
(Mehta & Bradshaw 1979). The overall reduction in the variation of the mean velocity
through the flow conditioning section and the contraction was estimated to be 94%.
At the exit of the contraction, the flow entered the test pipe (described in §§2.2 and 2.3).
At the end of the test pipe, a diffuser increased the flow area to that of the second 180°
bend leading to the air pump inlet. The area ratio of the diffuser was 4:1 and the half-
angle was 2±4°. The pressure recovery of the diffuser was estimated to be 0±81
(McDonald & Fox 1966).

2.1. Flow de�elopment length

A flow is fully developed when all mean flow quantities (i.e. velocity field and pressure
gradient) and all turbulence quantities (i.e. u#, spectra, skewness, flatness, etc.) are
independent of streamwise location. For our purposes, we need only the mean flow to
be fully developed, which is a much less stringent criterion, but the pipe was designed
to attain fully developed flow in the strictest sense. Previous experiments in pipes and
channels have shown that for lower Reynolds numbers (of order 10&) an entrance
length of approximately 70D to 100D is necessary to satisfy this criterion. For example,
Abell (1974) verified the fully developed condition at a Reynolds number of 300¬10$

by comparing streamwise turbulence intensity profiles and mean velocity profiles at
71±9D and 86±2D downstream of the tripping device. To establish the development
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F 1. A diagram of the experimental facility. The flow is counter clockwise.

length at higher Reynolds numbers, we can divide the development length into three
parts : a laminar-to-turbulent transition length (L

!
), a turbulent boundary layer

development length (L
"
) and a large-eddy development length (L

#
), and we can

investigate the Reynolds number dependence of each part.
The transition length L

!
will depend on the length Reynolds number Re

L
since no

tripping device was used at the inlet of the test pipe. A reasonable value for Re
L

with
low levels of free-stream turbulence is 2¬10&. Hence L

!
}DE 2¬10&}Re. The

maximum value of L
!

therefore occurs at the lowest Reynolds number investigated,
31¬10$, where L

!
}D! 7. At high Reynolds numbers the transition length is

considerably smaller.
The turbulent boundary layer development length (L

"
) is the length required for the

boundary layers to meet at the centre of the pipe. If we neglect the mild favourable
pressure gradient and the transverse curvature of the pipe wall, a zero-pressure-
gradient estimate indicates that the development length is inversely proportional to the
skin-friction coefficient. Hence

L
"
}DEC

"
}λ, (13)

where C
"

is an empirical constant.
After the boundary layers meet, an additional length is required for the turbulence

to become fully developed (L
#
). The scale that will take the longest length to develop

is the large-scale streamwise structure with a characteristic time of D}uτ. If we assume
that the structure is convected with the average velocity of the flow, then L

#
should

follow the relationship L
#
}DCU{ }uτ or

L
#
}DEC

#
}λ"/# (14)

where C
#

is another empirical constant.
The upper value of the development length occurs if the three parts are taken to be

independent. If we neglect the transition length, the overall development length is a
weak increasing function of Reynolds number, given by

L}DEC
"
}λ­C

#
}λ"/#. (15)

An estimate for C
"

and C
#

can be made from the channel flow results of Dean &
Bradshaw (1976). At a Reynolds number of 10&, the shear layers met at approximately
30 channel heights downstream of the tripping device and the flatness profiles were
independent of streamwise position at approximately 67 channel heights.† Therefore,

L}DE 0±5}λ­5}λ"/#. (16)

† The estimates of L
"
and L

#
represent an average of the last measurement location where the flow

did not satisfy a development criterion and the first measurement location where the flow satisfied a
development criterion.
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The development length predicted from (16) is consistent with the pipe flow
measurements by Abell (1974), who found that at a Reynolds number of 300¬10$, the
overall development length (L) was 72D compared to 78D as predicted by (16).

Equation (16) predicts an increase in development length from 78D to 131D when
the Reynolds number increases from 300¬10$ to 40¬10'. The measurements
presented here were all taken at least 164D downstream of the contraction exit, and
therefore the flow was believed to be fully developed for all Reynolds numbers.

2.2. Surface finish

A surface is usually considered smooth if the equivalent sand-grain roughness height
(k

s
) is less than five viscous lengths (ν}uτ), which is approximately the size of the viscous

sublayer (Schlichting 1987). That is,

k
s
}R% 5}R+ (17)

or equivalently,
k
s
}D% 5}Re (λ}8)"/# (18)

for a pipe to be considered smooth. The most severe roughness requirement is at the
maximum Reynolds number of 35¬10'. Most machined surfaces are specified with a
root-mean-squared roughness, and, as we will show later, for the particular machined
and polished surface of our pipe, k

s
E 3k

rms
. Therefore, for a 129 mm diameter pipe,

k
rms

must be less than 0±21 µm (8±3 µin.) for the surface to be considered smooth at all
Reynolds numbers up to 35¬10'.

The surface of the test pipe was carefully prepared to ensure that it was smooth.
Consecutive sections of the test pipe were joined together and then honed and polished
by a vendor that specializes in these processes. The pipe was then hand polished and
inspected. Prior to performing the measurements presented in this paper, a preliminary
set of measurements were made to determine the quality of the surface finish. For the
preliminary measurements, the section of pipe 54D upstream of the primary
measurement point was polished to a surface finish of 0±15³0±03 µm r.m.s. The section
upstream of that location was polished to a lesser finish somewhere between 0±30 and
0±40 µm. The effect of this discontinuity in roughness was initially considered
unimportant, but the preliminary measurements indicated that it could not be ignored
for Reynolds numbers greater than 20¬10'. Subsequently, the entire test pipe was re-
polished and the surface finish at different points along the pipe was measured
independently by three different people using a comparator plate. At each point, the
estimate from each person was within ³0±03 µm of the average value for that point.
According to these measurements, the surface finish of the entire test pipe can be
conservatively characterized as a 0±15³0±03 µm r.m.s. which corresponds to k+

s
¯

3±5³0±7 at Re¯ 35¬10'. The pipe is therefore hydrodynamically smooth at all
Reynolds numbers reported here. The issue of surface roughness will be considered
further in §5.

2.3. Test pipe specifications

The test pipe was an extruded tube manufactured from 6061-T6 aluminium. It had an
outer diameter of 152 mm and a wall thickness of 13 mm (as purchased). The overall
length of the test pipe (202D) was divided into eight segments to facilitate assembly.
Consecutive segments were assembled, aligned, honed and polished to ensure a straight
pipe, a precise diameter, a smooth surface and uniform connections. The test pipe had
two access ports for measurements of the velocity profiles. The secondary test section
was located 160D downstream of the contraction exit, and the primary test section was
located 196D downstream of the contraction exit and 6D upstream of the end diffuser.
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The pressure gradient was measured between the secondary and primary test section
(164D to 189D).

The diameter of the test pipe was measured at 17 locations along its length. The inner
diameter at each location was within ³0±08 mm of the average diameter at a given
location and most were within ³0±03 mm. This tolerance was independent of angular
and longitudinal position, but these measurements were confined to regions within 1D
of the connections. The pressure gradient and velocity profiles were measured at
locations where the diameter of the test pipe was 129±36³0±08 mm.

The test pipe was round along the entire length, but the average diameter varied
slightly (0±8 mm or 0±6% maximum variation). The variation of the inner diameter
needed to be small to prevent changes in the flow due to acceleration or deceleration.
Two types of variation of the diameter could have affected the measurements in the test
pipe. The first type is called waviness, which had a typical wavelength of 2–3 diameters
(estimated by examining the variation of the surface reflection of the pre-honed test
pipe) and is caused by the fabrication process. The waviness was removed by the
honing process. The second type of variation of diameter was caused by re-honing
parts of the test pipe to improve connections or remove scratches in the original honed
pipe. The re-honing involved a blending process to match slightly different diameters.
The transitions in diameter were gradual and were believed to have a negligible affect
on the measurements (see Zagarola 1996).

Another consideration was the straightness of the pipe. Variations in straightness
will distort the velocity field in a manner similar to the curvature effects encountered
in flow around a bend. This analogy suggests finding a radius of curvature (R

!
) for the

test pipe and applying scaling laws developed for curved pipe flows. For a curved pipe,
we can define the parameter

Ω¯Re (R}R
!
)#, (19)

where Re is the conventional Reynolds number for the pipe. Experiments show that
when Ωi 1, the friction factor in curved pipes is equivalent to the value in straight
pipes. After analysing a considerable amount of data from various authors, Ito (1959)
concluded that if Ω! 0±034, the curved pipe friction factor relationship coincided with
the straight pipe relationship.

The test pipe was aligned with a 32¬ optical builders level and an alignment target.
The straightness of the entire test pipe was determined to be ³1±9 mm. From this
uncertainty, an estimate for the minimum radius curvature is 3000 m, which gives
Ω% 0±018. The pipe was therefore considered sufficiently straight.

The test pipe consisted of eight sections connected by custom-designed couplings
that ensured repeatability of the connections. An estimate for the largest mismatch or
step at a connection was 0±08 mm. The velocity profiles were measured at a location
approximately 8300 step heights behind a connection. To show that the step had a
negligible affect on the measurements, an experiment was performed with an artificial
step placed in the flow. The artificial step was created using a $

%
in. diameter cylinder

placed through the wall of the test pipe. The artificial step was 1±7 mm high at the
centre and 1±0 mm high at the sides. Velocity profiles were measured at 3400 step
heights downstream (4±8 m) of the artificial step at four different Reynolds numbers
between 2±7¬10' and 19¬10'. The differences between the velocity profiles measured
with and without the artificial step in the flow were less than the uncertainty in the
velocity measurement, and we concluded that the velocity profiles were not affected by
the actual steps in the flow.
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3. Measurement techniques

The mean-flow measurements consisted of streamwise static pressures and velocity
profiles at Reynolds numbers between 31¬10$ to 35¬10'. Each Reynolds number was
obtained by varying either the density or the flow rate. The density was approximately
proportional to the absolute pressure since the temperature was always near ambient
(295 K to 300 K). The absolute pressure inside the pipe was varied between 1 atm and
186 atm and was measured by three calibrated pressure gauges each with a different
full-scale range. The absolute pressure measurements had an uncertainty of ³0±3% of
the reading. The temperature was measured with a calibrated chromel–alumel
thermocouple with an uncertainty of ³0±05% for temperatures near ambient. The
density and viscosity were calculated from the absolute pressure and temperature using
real-gas relationships (see Zagarola 1996). The uncertainty in the calculated density
and dynamic viscosity were ³0±36% and ³0±80%, respectively.

The velocity profiles were measured at the primary test section by traversing a
0±90 mm round Pitot probe. For each profile, the velocity was measured at 52 locations
between 0±007R and 1±5R. The Pitot probe was aligned with the flow direction to better
than ³1° which caused an insignificant error due to yaw (see Chue 1975). The Pitot
probe measurements were reduced to velocity measurements using the incompressible
Bernoulli equation. These measurements were corrected for the velocity gradient effect,
finite-size static pressure taps, viscous effects, radial pressure gradient and turbulence
according to the methods outlined by Chue (1975). These corrections were small and
tended to cancel. In §4, the corrections will be reviewed in more detail and the impact
on the measured velocity will be quantified.

The Pitot probe was traversed by a model LM-F5A-P13A positioner manufactured
by Compumotor which had a resolution of 0±002 mm and an accuracy of ³0±013 mm.
The position was also measured using a linear potentiometer. The potentiometer
measurement had an uncertainty of ³0±076 mm and was used only as a check on the
positioner. The starting position for the probe was found by a capacitance method
developed by Muzas (1995), where the Pitot probe tip and test pipe wall served as the
two ‘plates ’ of the capacitor. With this method, the outer surface of the Pitot probe
could be placed within 0±04 mm of the wall at the start of a survey. The overall
uncertainty in the distance from the wall to the centre of the Pitot probe was
³0±05 mm.

Sixty-two static pressure taps were placed at various locations along the length and
circumference of the test pipe. The taps were formed by boring a 0±79 mm diameter
hole from the outside of the test pipe radially inwards towards the centre. The pressure
gradient was determined from 20 static pressure taps equally spaced over 25D, in the
region between the secondary and primary test section. The uncertainty in the stream-
wise position for the 20 taps relative to each other was ³0±1 mm or ³0±001D.

In figure 2, the static pressure errors for the 20 taps used to measure the pressure
gradient are shown for five different Reynolds numbers. The pressure error shown
(∆P

c
) is the difference between the pressure measured at a tap and the pressure

calculated at that tap by a least-squares approximation of all 20 taps. The pressure
errors appear to be randomly distributed and the maximum error occurs at the
maximum Reynolds number. The maximum error was approximately equal to τ

w
.

None of the taps showed the large pressure deviations associated with burrs, and
therefore, we believe the holes were approximately uniform. Table 1 lists the static
pressure errors (2σ of ∆P

e
}τ

w
), the pressure gradient, the correlation coefficient (R

c
)

and the uncertainty in the pressure gradient estimation (95% confidence interval) for
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F 2. A comparison between the static pressure errors for the 20 taps used to measure the
pressure gradient. The pressure error is the difference between the pressure measured at a tap and the
pressure calculated at that tap by a least-squares approximation using all 20 taps.

Re 2σ for ∆P
e
}τ

w
dP}dx (Pa m−") R

c
Error (%) dP}dx

32¬10$ 0±19 ®1±571 0±99998 ³0±29
99¬10$ 0±11 ®11±64 0±99999 ³0±17

750¬10$ 0±12 ®32±67 0±99999 ³0±18
6±1¬10' 0±89 ®238±2 0±99989 ³0±68
35¬10' 1±10 ®5176 0±99984 ³0±83

T 1. Uncertainty of the static pressure measurements

the Reynolds numbers shown in figure 2. The maximum uncertainty in the estimation
of the pressure gradient occurred at the maximum Reynolds number and was
³0±83%.

The Pitot probe and static pressures were both measured as differential pressures.
The range of differential pressures encountered in this experiment was approximately
five decades, from 1 Pa to 100¬10$ Pa (1±5¬10−% p.s.i.d. to 15 p.s.i.d.). Six differential
pressure transducers were used to accurately determine the pressure gradient and
velocity profiles across the entire range of Reynolds numbers. Four transducers were
located inside the pressure vessel to minimize the stresses acting on the instruments and
were used for surveys at static pressures above atmospheric. The other two transducers
were located outside the pressure vessel and were used for tests at atmospheric
pressure. The differential pressure transducers were calibrated by comparison with a
manometer standard or a dead-weight tester, depending on its range, and have an
uncertainty of less than ³0±40% of the reading.

The data were acquired through use of a data acquisition system conforming to the
CAMAC standard and a laboratory computer. The measurement devices output
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analog voltages which were offset and amplified as required by a calibrated differential
amplifier. The A}D converter had 12-bit resolution and a voltage window of ³5 V
(2±4 mV}count). The resolution of the conversion had no effect on the accuracy of the
measurements. For each data point, four channels – the differential pressure, the
position, the absolute pressure and the temperature – were sampled for nominally 30 s.

The average velocity was calculated by numerically integrating the velocity profile.
The integration limits were the data point closest to the wall and the centreline. The
average velocity was corrected for the unresolved region near the wall. Here the
velocity profile was represented using the relation proposed by Spalding (1961). To find
the average velocity, Spalding’s relation was integrated from the wall to the first data
point, and this value was added to the value attained from integrating the remaining
profile to the centreline. The values of κ and B used in this correction were 0±44 and
6±3 which were found to adequately represent the velocity profile in the overlap region
(see Zagarola et al. 1996). Note that the difference in the average velocity when using
other values for κ and B was small (e.g. for κ¯ 0±41 and B¯ 5±2, the average velocity
changed by less than 0±09% for Re¯ 35¬10'). The difference between the average
velocity calculated using Spalding’s relation and a linear relation for the correction had
a maximum value of 0±4% which occurred at the maximum Reynolds number.

The centreline velocity was found by a least-squares approximation of the velocity
profile near the centreline. This method was preferred over using the maximum velocity
as the centreline velocity because this method reduced the random error associated
with an individual velocity measurement. In practice, the difference between the
maximum velocity and the centreline velocity found by this method was less than 0±2%
of the centreline velocity.

To investigate the symmetry of the flow, the static pressure was measured at eight
positions, uniformly spaced around the circumference of the pipe and located
approximately 6D upstream of the primary test section. We investigated two different
Reynolds numbers, 190¬10$ and 12¬10'. For each Reynolds number, the variation
in the circumferential static pressure was comparable to the uncertainty in the
streamwise static pressure (see table 1).

In addition, the azimuthal variation in the wall shear stress was investigated using
eight Preston probes, equally spaced around the circumference of the pipe, at a location
approximately 2D downstream of the primary test section. Two different Reynolds
numbers were investigated, 190¬10$ and 12¬10'. For both Reynolds numbers, the
variation in the Preston probe pressure was less than 1±7%, randomly distributed
around the circumference. This variation can be attributed to differences in Preston
probe geometry. The maximum variation can be compared to similar experiments such
as the one performed by Dickinson (1975) in which the variation was as great as ³4%.

The velocity measurements at positions between ®0±25! r}R! 0±25 were also used
to investigate the symmetry of the flow at all Reynolds numbers. For most Reynolds
numbers, there appeared to be a slight asymmetry in the profile since the peak velocity
occurred at a position approximately 0±5% of the radius past the centreline. The
asymmetry can be interpreted as an error in either position or velocity. If our estimate
for the uncertainty in the position is correct (³0±07% of R for positions near the
centreline), then this asymmetry is most likely caused by small systematic errors in the
velocity. Even so, this asymmetry is within the uncertainty bounds for the velocity
measurements and will not change the conclusions drawn from these measurements.

In summary, the flow was found to be azimuthally symmetric within the uncertainty
of the measurements.
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4. Corrections to the measurements

Corrections to the velocity measurements that were considered are due to the
velocity gradient, viscosity, turbulence, radial static pressure gradient, compressibility
and probe tip}strut interference. It will be shown that all corrections are small and
tend to cancel. A comprehensive review of these effects and corrections is given in
Chue (1975).

4.1. Velocity gradient

When measuring velocities with a Pitot probe in a uniform stream, the velocity
measured is that at the geometric centre of the probe. When the probe is used to
measure the velocity in a shear layer, the velocity measured is not that at the centre of
the probe, but is different due to two effects. First, the velocity is proportional to the
square-root of the dynamic pressure, so when the dynamic pressure is averaged over
the cross-sectional area of the probe, the calculated velocity is different from that at the
centre. Secondly, the presence of the Pitot probe deflects the streamlines in a manner
which causes the Pitot probe to measure a velocity different from that at the centre.
Chue (1975) shows that the first correction is small compared to the second. A
correction for the second effect (generally called the velocity gradient effect) can be
made by either reducing the velocity at a given point or displacing the point towards
the region of higher velocity (i.e. shift the point further from the wall). Most
investigators have chosen to displace (shift) the position.

The experiments by MacMillan (1956), Livesey (1956), Davies (1958), Patel (1965)
and Ozarapoglu (1972) showed displacements (∆y) of 8% to 16% of the outer
diameter (D

probe
) of the Pitot probe, and that this correction was independent of the

inner diameter of the probe, velocity gradient and probe Reynolds number. This
correction is usually written as

∆y}D
probe

¯ ε, (20)

where ε is taken to be between 0±08 and 0±16.
The correction given by (20) cannot continue in regions where the velocity gradient

is small (e.g. the core region of a pipe). Clearly, as the velocity gradient becomes small
the displacement should tend towards zero. Chue (1975) analysed an extensive set of
experimental and theoretical investigations on free shear flows and concluded that the
correction for both free and wall-bounded shear flows should depend on the velocity
gradient. He attributed the constant displacement that some investigators found to the
limited range of velocity gradients encountered in their experiments (i.e. limited range
of Reynolds numbers and limited range of wall-normal positions). Chue suggested a
correction method for wall-bounded shear flows which can be represented by

∆y}D
probe

¯ ε(α)E 0±18(α®0±17α$), (21)

where α is the shear parameter.
If the mean velocity gradient is known, the shear parameter can be calculated

according to

α¯
1

U
c

dU

dy )
c

D
probe

2
, (22)

where the subscript c denotes the quantity evaluated at the centre of the Pitot probe.
The shear parameter has a maximum value near the wall and decreases to zero at the
centreline. For positions within the viscous sub-layer, the shear parameter is unity and
the shift in the position given by (21) is 0±15¬D

probe
. This is the same value as the one
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obtained by MacMillan and verified by Patel. Equation (21) was used to correct the
measured positions.

The displacement correction affects the estimate of the average velocity and log-law
constants. The correction given by (21) changed the average velocity by a maximum of
0±15% which occurred at low Reynolds numbers. The effect of the displacement
correction on κ was estimated to be less than 0±6% for all Reynolds numbers above
300¬10$. The impact on κ at lower Reynolds numbers was not determined because it
is doubtful that a log law exists over a large enough range of y+ to make an accurate
estimate. The maximum change of the additive constants, B and B*, was 2% and 3%,
respectively, which occurred at the maximum Reynolds number. In contrast, it was
found that the commonly used MacMillan correction had a much larger and we believe
spurious effect on the constants (on the order of 5% for κ and 20% for B and B*).

4.2. Other corrections

In our experiment, the minimum probe Reynolds number occurred at the minimum
pipe Reynolds number when the probe was near the wall. Here the probe Reynolds
number was approximately 40. For a probe Reynolds number of 100, the data
examined by Chue (1975) indicate that viscous effects will increase the measured
velocity by 0±5% over the true value. In our experiment, most measurements were at
significantly higher probe Reynolds numbers than 100 so the correction for viscous
effects was typically negligible.

Turbulence affects the readings of a Pitot probe by increasing the total pressure
sensed at the tip and varying the static pressure across the radius of the pipe. For y+

greater than approximately 50, Dickinson (1975) showed that the combined effect due
to turbulence can be approximated by

U®U
m

U
m

¯®
u#

2U#
m

, (23)

where U
m

is the measured velocity and u# is the mean-squared velocity fluctuation.
Equation (23) shows that the effect of turbulence is to increase the measured velocity
above the true velocity. The error in the measured velocity is largest in the region near
the wall, since the fluctuating velocity is the largest percentage of the mean velocity. It
can be shown that the velocity correction for turbulence was typically less than 0±5%
of the local velocity. The impact of this correction on the average velocity was largest
at low Reynolds number and was less than 0±6%. For higher Reynolds numbers, the
impact was typically less than 0±3%.

The velocity measurements were corrected for errors in the static pressure
measurements caused by finite-size static pressure taps in accordance with the results
obtained by Shaw (1959). Errors due to finite-size static pressure taps cause the
measured velocity to be smaller than the true velocity. The maximum correction was
less than 0±5% of the uncorrected average velocity. Note that this correction does not
affect the measured static pressure gradient since all static taps had a similar geometry.

The interference caused by the strut and probe tip can affect the static pressure
measured at the wall and the total pressure measured at the Pitot probe tip. The
experimental data given in Chue (1975) can be used to show that the error in the
measured velocity was less than 0±03% for the Pitot probe geometry used in this
experiment. Consequently, no corrections for strut or probe tip interference were
applied to the measurements.

Compressibility can affect the velocity measurements in several ways. All the
corrections were small since the maximum Mach number encountered in this
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F 3. Plots showing the effect of all corrections on the velocity profiles for Reynolds
numbers of (a) 31¬10$, (b) 310¬10$, (c) 3±1¬10' and (d ) 35¬10'.

experiment was approximately 0±07. The maximum difference between the measured
and true velocity due to compressibility was less than 0±02%, and therefore no
corrections for compressibility were made.

4.3 Effect of all corrections

In summary, the velocity profiles were corrected for the errors caused by the velocity
gradient, viscosity, radial static pressure gradient, turbulence and finite-size static
pressure taps. The position values were corrected using the formula derived from Chue
(1975) before applying the other corrections. Figure 3(a–d ) shows comparisons
between the uncorrected velocity profiles and the corrected velocity profiles for four
different Reynolds numbers. The effect of these corrections was negligible for the
velocity profiles at Reynolds numbers of 3±1¬10' and 35¬10'. At Re¯ 310¬10$, the
corrections were only important near the wall, and at Re¯ 31¬10$, the corrections
were important for most of the velocity profile. The effect of these corrections on the
average velocity is shown in figure 4. The maximum correction occurred at the lowest
Reynolds number investigated and was less than 1%. At high Reynolds numbers
(Re" 2¬10'), the correction was negligible (less than 0±1%).

The largest difference between the form of the corrected and uncorrected velocity
profiles occurs at the lowest Reynolds number. To examine the accuracy of our
correction method, the velocity profiles were compared with other experimental
velocity profiles which did not require these corrections. The laser Doppler anemometry
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F 4. A comparison between the measured and corrected average velocity as a function of
Reynolds numbers.
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F 5. Comparisons between the velocity profile measured here with a Pitot probe and the
velocity profile measured by Toonder & Nieuwstadt (1997) with an LDA system. In (a) the Pitot
probe measurements were not corrected, while in (b) the Pitot probe measurements were corrected for
the errors discussed in §4. The size of the symbols is representative of the uncertainty in our
measurement of U+.

(LDA) measurements by Toonder & Nieuwstadt (1997) were used for this comparison.
The pipe used in their experiment had a diameter of 40 mm and a length of 34 m. The
velocity profiles were measured at a streamwise location 850D downstream of the
tripping device, so that there is no question that the flow was fully developed. The
friction velocity was determined from the static pressure measured at two points which
were separated by at least 250D. Toonder & Nieuwstadt corrected their measurements
for a finite-size measuring volume, but this correction was presumably small since the
size of the measuring volume was only 20 µm (0±1% of the radius) in the wall-normal
direction.

Figures 5(a, b) and 6 show the mean velocity profile that Toonder & Nieuwstadt
measured at their highest Reynolds number of 25¬10$ compared to the mean velocity
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F 6. A comparison between the velocity profile measured here with a Pitot probe and the
velocity profile measured by Toonder & Nieuwstadt (1997) with an LDA system. The Pitot probe
measurements were corrected for the errors discussed in §4.

Quantity Variable
Uncertainty

(% unless noted)

Differential pressure P
#
®P

"
³0±40

Absolute pressure P
a

³0±30
Absolute temperature T

a
³0±05

Wall-normal position y ³0±05 mm
Density ρ ³0±36
Dynamic viscosity µ ³0±80
Kinematic viscosity ν ³0±88
Velocity U ³0±35
Average velocity U{ ³0±30
Friction velocity uτ ³0±45
Centreline velocity U

CL
³0±30

Pressure gradient dP}dx ³0±83
Radius or diameter R or D ³0±06
Normalized wall-normal position ! centreline (outer scaling) η ³0±07
Normalized wall-normal position ! 1st point (outer scaling) η ³11
Normalized wall-normal position ! centreline (inner scaling) y+ ³0±99
Normalized wall-normal position ! 1st point (inner scaling) y+ ³11
Normalized velocity (inner scaling) U+ ³0±57
Friction factor λ ³1±1
Reynolds number Re ³0±93
Ka! rma! n number R+ ³0±99

T 2. Uncertainty estimates of key quantities

profile that we measured at our lowest Reynolds number, 31¬10$. Figure 5(a) shows
the uncorrected data, and figures 5(b) and 6 show the corrected data. In figure 5(a, b)
the velocity profiles are normalized using inner scaling variables. For this scaling, the
difference between the velocity profiles near the centreline is due to the difference in
Reynolds number. The uncorrected velocity profile is significantly different from the
velocity profile measured by Toonder & Nieuwstadt, especially near the wall. Even in
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the overlap region, the shapes of the velocity profiles are slightly different. However,
the corrected velocity profiles are in excellent agreement. In figure 6, the corrected
velocity profile is also plotted using outer layer variables. Again, the corrected velocity
profile is in excellent agreement with the data of Toonder & Nieuwstadt, validating our
correction procedures at low Reynolds numbers where the errors are the largest.

4.3. Uncertainty analysis

Estimates for the uncertainties of the measured and derived quantities are given in
table 2. The uncertainties for the derived quantities were calculated using the method
outlined by Kline and McClintock (see Holman 1989 for a summary of this method).
All values given in table 2 represent a 95% confidence interval, and they were
established using the Reynolds number which produced the largest uncertainty.
Therefore, for many quantities (e.g. the pressure gradient), the estimated uncertainty
was considerably larger than the actual uncertainty at many Reynolds numbers. Also,
the uncertainty analysis assumes that the corrections applied to the measurements had
an uncertainty of ³25%, but it does not account for any systematic errors. When
systematic errors were encountered, the sources of these errors were eliminated and the
measurements were repeated.

5. Surface roughness

Preliminary measurements of the mean velocity profiles and the friction factor were
made at 28 different Reynolds numbers. These surveys were performed before the test
pipe was polished to the surface finish used during the final surveys. The preliminary
surveys indicated that the surface of the test pipe was not adequately smooth for
Reynolds numbered above approximately 20¬10'.

Figure 7 shows a comparison between the friction factor before and after the test
pipe was polished a second time. The size of the symbols in figure 7 is representative
of the uncertainty in the friction factor. For Reynolds numbers below 24¬10', the two
sets of measurements are in good agreement, but for Reynolds numbers greater than
this value, the friction factor was larger before the second polishing. Before the second
polishing, the surface of the test pipe had a 0±30 to 0±41 µm r.m.s. finish for the
upstream portion of the test pipe (0 to 142D), and a 0±15 µm r.m.s. for the downstream
portion (142D to 196D). After the second polishing, the entire surface had a
0±15³0±03 µm r.m.s. finish. From the data presented in figure 7, it can be concluded
that the reduction in the roughness height (i.e. improved surface finish) decreased the
friction factor for Reynolds numbers greater than 24¬10'. Although these results are
encouraging, they do not prove that the surface was hydrodynamically smooth at the
highest Reynolds numbers after the test pipe was polished a second time.

To establish the smoothness of the pipe, we need to examine the velocity profiles.
One consequence of roughness is a decrease in the additive constant B in the log law
(see Hama 1954; Clauser 1956; Schlichting 1987). The additive contant was found
from the final set of measurements using the following procedure. First, the value of
von Ka! rma! n’s constant (κ) was found from a curve fit of the friction factor data (the
procedure is described in §6). The value of von Ka! rma! n’s constant was found to be
0±436. Next, for each Reynolds number, B was calculated for each data point in the
logarithmic region which was shown to exist for 600! y+! 0±07 R+ (see §7). The data
points near the wall (y}R! 0±01) were neglected due to the relatively large uncertainty
in their positions, and only Reynolds numbers with at least six data points in the
assumed logarithmic region were analysed. At the higher Reynolds numbers, 15 data
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F 7. A comparison between the friction factor measured before and after the test pipe was
polished a second time. The size of the symbols is representative of the error in the friction factor
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F 8. The additive constant B in the log law as a function of Reynolds numbers. The calculation
of B assumed a fixed value for von Ka! rma! n’s constant (κ¯ 0±436). The data used to calculate B were
measured after the test pipe was polished a second time. The uncertainty in B is ³0±12.

points were in the assumed log region. The values of B at each Reynolds number were
averaged (no-weighting) and the results are shown in figure 8. Also shown is an
estimate of the uncertainty in B (³0±12) which is mostly due to the uncertainty in uτ.

The additive constant has an average value of 6±15 with a standard error of 0±02
when the highest Reynolds number is neglected. Note that in Zagarola & Smits (1997)
we gave the value of B as 6±13 with a standard error of 0±04. The new value is based
on a refined analysis of the log-law limits which is presented in §7.

At the highest Reynolds number, there is a slight decrease in B. If we accept the trend
of B at the highest Reynolds number to perhaps display the weak effects of roughness,
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then the change in B from its global average value may be used as a measure of the
roughness. For Re¯ 35¬10', the decrease in B from its global average value is 0±15
(E 6±15–6±00). From analysis of his rough pipe data, Nikuradse (1933) developed a
correlation for the change in B at the ‘ inception’ of roughness which is

∆B¯ 1±1–2±3 logk+
s
, (24)

where k+
s

is the non-dimensional equivalent sand-grain roughness. According to
Nikuradse, the range of validity of (24) is 3±5!k+

s
% 7±1, but comparison with his data

shows good agreement to k+
s
¯ 3±0 where ∆B¯ 0. For k+

s
! 3±0, the roughness height

has no impact on B, and presumably no impact on the velocity distribution outside the
viscous sublayer.

For a 0±15 change in B, (24) gives k+
s
¯ 3±5 which is actually in the smooth regime

as defined by Schlichting (1987). We can then infer that k
s
E 3k

rms
since k+

rms
¯ 1±2. At

the next highest Reynolds number, we then have k+
s
¯ 3±0, and we expect from

Nikuradse’s rough-pipe data that the effect on the additive constant is negligible, and
this conclusion is consistent with the behaviour shown in figure 8. It appears that the
effects of roughness on the data are negligible, except for the highest Reynolds number
where it is possible that the additive constant has been reduced slightly from 6±15 to
about 6±00, although strictly speaking, the change is commensurate with the uncertainty
in B (³0±12).

6. Friction factor results

The friction factor relationship proposed by Prandtl can be derived from the
integration of the mean velocity profile (see §1). This relation can be written as

1}λ"/#¯C
"
log (Reλ"/#)­C

#
, (25)

where C
"
and C

#
are coefficients which may or may not depend on Reynolds number.

If C
"
¯ 2±0 and C

#
¯®0±8, then (25) is the same as that derived by Prandtl from the

smooth-pipe data of Nikuradse (1932). The argument that the coefficients in (25) are
independent of Reynolds number is predicated on two assumptions: (i) a log law exists
with coefficients that are independent of Reynolds number, and (ii) the contribution of
the near-wall region (say y+! 50) to the average velocity is negligible. For low
Reynolds numbers (say Re! 100¬10$), the ratio of scales R+ is still relatively small,
and it is probable that the interaction between the wall and core regions is significant.
Here a logarithmic overlap region may not exist. At higher Reynolds numbers, local
similarity may exist and the coefficients in the log law may be independent of Reynolds
number. Even so, the contribution to the average velocity from the near-wall region
may be significant, and C

#
may still depend on Reynolds number.

To identify the relationship between the mean velocity profile and the friction factor,
the coefficients in (25) are written in terms of the log-law coefficients (B,B* and κ).
That is,

C
"
¯

1

κ2o2 log (e)
, (26)

C
#
¯

B

2o2
®

1

κ 9
log (4o2)

2o2 log (e)
­

3

4o2:­C
$
®C

%
, (27)

where e is the exponential constant (eE 2±718), and C
$

and C
%

are coefficients which
account for the difference between the actual velocity and velocity predicted by the log
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law when extrapolated into the core and near-wall regions, respectively. Note that C
$

and C
%

are always greater than zero and that the functional dependence of C
%

is
approximately 1}R+ (this will be quantified later in this section). When R+ is large, C

%
must go to zero because the size of the near-wall region (say y+! 50) becomes a
negligible fraction of the radius.

Equation (26) can be used to determine κ without evaluating the slope of the velocity
profile using discrete data points or without curve fitting each velocity profile over a
limited range of y+. This appears to be the most accurate method to determine κ
provided that the Reynolds number dependence of the near-wall region is properly
accounted for in C

%
. If C

"
is independent of Reynolds number, then κ must also be

independent of Reynolds number. There is no equivalent method to determine B since
C

$
and C

%
are also unknown, and the velocity profiles must be used to determine B. If

C
"
and C

#
are independent of Reynolds number and R+ is large, then both B and C

$
must be independent of Reynolds number.

Besides using the average velocity, the resistance in a pipe can be represented in
terms of the centreline velocity (U

CL
). If (6) is added to (7), we obtain

U
CL

}uτ ¯
1

κ
lnR+­B­B*. (28)

For comparison with (25), equation (28) can be re-written as

U
CL

}uτ ¯ 2o2[D
"
log (Reλ"/#)­D

#
], (29)

where D
"
and D

#
are coefficients. These coefficients can also be written in terms of the

log-law coefficients as

D
"
¯

1

κ2o2 log (e)
, (30)

D
#
¯

B­B*

2o2
®

1

κ 9
log (4o2)

2o2 log (e): . (31)

Consequently, C
"

and D
"

are expected to be equal. Equation (30) provides a second
method to determine κ. Also, unlike C

#
, D

#
does not depend on Reynolds number

provided that the log-law constants are independent of Reynolds number.
In figure 9(a) we plot the variation of the friction factor with Reynolds number. The

error bars represent the total uncertainty in the measurement (³1±1% of the friction
factor). Also shown is the formula proposed by Blasius (1913),

λ¯ 0±3164}Re!±
#& (32)

which is considered accurate for Re! 100¬10$, but departs significantly from
experimental data and the formula proposed by Prandtl at higher Reynolds numbers.
The data are within ³1% of (32) for Re! 75¬10$ and within ³2% at Re¯ 98¬10$,
and within ³2% of the relationship proposed by Prandtl for Reynolds numbers less
than 2¬10'. For Reynolds numbers above 2¬10', the friction factor is larger than that
given by Prandtl’s formula by an amount which increases with Reynolds number up
to a maximum difference of 5±5% at Re¯ 35¬10'. The difference between Prandtl’s
formula and our data is significantly larger than the estimated uncertainty of our
measurements.

For further comparison with Prandtl’s formula, in figure 9(b) we plot the friction
factor results with the ordinate and abscissa implied by (25). Here the error bars
represent the uncertainty in the ordinate, ³0±55%. Inspection of figure 9(b) indicates
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that the constants chosen by Prandtl do not accurately represent our data. A least-
squares approximation (no weighting) was used with our data to determine new values
for the coefficient in (25). When all Reynolds numbers are used in the analysis (Case
1 in table 3), the new values for the constants are 1±901 and ®0±432. The agreement
between this new curve and the data is satisfactory (see figure 9b), but more accurate
relationships can be found as follows.

As discussed earlier, it seems reasonable to disregard the data below C 100¬10$

when determining the coefficients in (25). Also, there may be a slight roughness effect
at the very highest Reynolds number. Therefore, the coefficients in (25) were
determined using 98¬10$%Re% 30¬10' (Case 4 in table 3). For comparison with
this Reynolds number range, the analysis was repeated for the different ranges given
in table 3, where R

c
is the correlation coefficient. The results from a least-squares

approximation of Nikuradse’s friction factor data are also given for two different
ranges of Reynolds numbers. The coefficients found from Nikuradse’s data for
3±1¬10$!Re! 3±2¬10' are the same as those determined by Prandtl. The values of
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Case Reynolds
number number range C

"
C

#
R

c
κ

1 31¬10$–35¬10' 1±901 ®0±432 0±99979 0±428
2 98¬10$–35¬10' 1±877 ®0±298 0±99987 0±434
3 140¬10$–35¬10' 1±872 ®0±270 0±99987 0±435
4 98¬10$–30¬10' 1±884 ®0±331 0±99991 0±432
5 98¬10$–24¬10' 1±889 ®0±358 0±99992 0±431
Nikuradse 3±1¬10$–3±2¬10' 2±00 ®0±81 0±99875 0±407
Nikuradse 100¬10$–3±2¬10' 1±95 ®0±55 0±99693 0±417

T 3. Coefficients for equation (25)

the correlation coefficient for Cases 1–5 are all very close to 1 which indicates that
functional form of (25) is in excellent agreement with the trends in the data. For Cases
2–5, the variation of C

"
and κ is small (³0±5% of the average value), but the variation

of C
#
is large (³14% of the average value). The large variation in C

#
may be expected

since the second term in (25) is a small fraction (2% to 4%) of the first term for all
Reynolds numbers above 100¬10$.

An interesting result from table 3 is that 0±428% κ% 0±435 which is considerably
larger than the values determined by other investigators including Nikuradse (1930)
(κ¯ 0±40), Coles (1955) (κ¯ 0±41), Patel (1965) (κ¯ 0±42), and Brederode & Bradshaw
(1974) (κ¯ 0±41). This observation will be discussed in the next section.

To investigate the friction factor relationship further, we define Θ given by

Θ¯λ[C
"
log (Reλ"/#)­C

#
]#, (33)

where Θ is a measure of the ‘goodness ’ of the curve fit. If the correlation coefficient
equals 1, then Θ¯ 1, independent of Reynolds number. The uncertainty in Θ is
approximately equal to the uncertainty in the friction factor. Therefore, if we choose
C

"
and C

#
correctly, then all friction factor data that follow the relationship given by

(25) should fall within 0±989!Θ! 1±011.
If we neglect the data for Re! 98¬10$ and Re¯ 35¬10' (Case 4 in table 3), the

variation of Θ with Reynolds number is shown in figure 10(a). The upward trend of
Θ at the very highest Reynolds numbers may well reflect the first influence or roughness
on the results, although the agreement is still within the uncertainty of the data. The
upward trend at the lower Reynolds numbers can be attributed to the Reynolds
number dependence of the near-wall velocity profile.

To further investigate the low Reynolds number trend observed in figure 10(a), we
need to take into account the Reynolds number dependence of the coefficient C

%
. If we

assume that the near-wall velocity profile can be accurately represented by the relation
proposed by Spalding (1961), then C

%
is proportional to the difference between the log

law and Spalding’s relation averaged across the radius of the pipe (and is only
significant for y+! 50). The difference was found using κ¯ 0±436 and B¯ 6±13. Since
this term is a small correction to (25) it is not sensitive to the exact values of the
constants. This analysis was incorporated into (25) and the friction data were
reanalysed for the cases given in table 3. For this purpose, (25) was re-written as

1

λ"/#
¯C

"
log (Reλ"/#)­C

#
­C

%
®

233

(Reλ"/#)!±
*!

, (34)

where C
#
­C

%
¯

B

2o2
®

1

κ 9
log (4o2)

2o2 log (e)
­

3

4o2:­C
$

(35)
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F 10. The friction factor ratio (equation (33)) as a function of Reynolds number for the
coefficients given in (a) Case 4 of table 3, (b) Case 4 of table 4, (c) for the coefficients used by Prandtl
(the data shown in (c) are from Nikuradse 1932).
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F 11. The variation of centreline velocity with Reynolds number.

Case Reynolds
number number range C

"
C

#
­C

%
R

c
κ

1 31¬10$–35¬10' 1±870 ®0±266 0±99991 0±435
2 98¬10$–35¬10' 1±863 ®0±212 0±99989 0±437
3 140¬10$–35¬10' 1±860 ®0±198 0±99988 0±438
4 98¬10$–30¬10' 1±869 ®0±241 0±99992 0±436
5 98¬10$–24¬10' 1±873 ®0±263 0±99993 0±435

T 4. Coefficients for equation (34)

and is believed to be independent of Reynolds number if a log law exists. Note that
there were only two free parameters in the least-squares approximation, C

"
and

C
#
­C

%
, and the data were not weighted. The results of this analysis are shown in

table 4.
Comparison between the results given in tables 3 and 4 reveals that for the results

derived using (34), the correlation coefficient is closer to 1 and the variation of C
"
and

κ from case to case is less (³0±002 for κ). Also, the value for κ for each case has
increased by approximately 0±004. In figure 10(b), we show the variation of Θ with
Reynolds number for the coefficients given in table 4 for Case 4. For the entire
Reynolds number range, Θ is within ³1±3% of 1 which is close to the uncertainty in
λ (³1±1%). The agreement with data at low Reynolds numbers is remarkable in the
light of the crude near-wall correction term.

We now can postulate two new friction factor relationships, one which neglects the
Reynolds number dependence of the velocity profile near the wall, and one which
accounts for this dependence. For Reynolds number between 100¬10$ and 35¬10',
a new friction factor relation is proposed which has the same functional form as the
one proposed by Prandtl but has different values for the coefficients. This new relation
is given by

1

λ"/#
¯ 1±884 log (Reλ"/#)®0±331 (36)
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Case Reynolds
number number range D

"
D

#
R

c
κ

1 31¬10$–35¬10' 1±862 1±321 0±99987 0±437
2 98¬10$–35¬10' 1±858 1±347 0±99982 0±438
3 140¬10$–35¬10' 1±860 1±335 0±99979 0±438
4 98¬10$–30¬10' 1±863 1±323 0±99982 0±437
5 98¬10$–24¬10' 1±868 1±299 0±99982 0±436

Nikuradse 3±1¬10$–3±2¬10' 1±96 0±85 0±99810 0±415
Nikuradse 100¬10$–3±2¬10' 1±85 1±37 0±99560 0±440

T 5. Coefficients for equation (29)

(Case 4 in table 3). This relation is believed to predict the friction factor in a smooth pipe
to better than ³1±2% for Reynolds numbers between 98¬10$ and 35¬10'. The fit at
lower Reynolds numbers is somewhat poorer because the near-wall region occupies a
significant portion of the radius for Re! 98¬10$.

The coefficients in (36) should be preferred over the ones adopted by Prandtl because
the data used to determine these are considerably more accurate than the data used by
Prandtl (Nikuradse 1932). To illustrate this point, we plot Θ as a function of Reynolds
number for Nikuradse’s data in figure 10(c). Here the values of C

"
and C

#
used to

calculate Θ were the ones used by Prandtl (2±0, ®0±8). (When all of Nikuradse’s data
are used in this analysis, C

"
¯ 2±000.) The standard deviation in these data is at least

a factor of three larger than for our data. Also, in determining C
"
and C

#
, Prandtl used

all of Nikuradse’s friction factor data, to Reynolds numbers as low as 3±1¬10$ where
it is doubtful a log law exists (see Patel & Head 1969). If we neglect Nikuradse’s data
for Re! 100¬10$, then C

"
¯ 1±95, which is closer to the value we obtained.

For a wider range of Reynolds numbers, a new friction factor relation is proposed
which is similar to Prandtl’s relation, but with new coefficients and an additional term
to account for the form of the near-wall velocity profile. The new relation is given by

1

λ"/#
¯ 1±869 log (Reλ"/#)®0±241®

233

(Reλ"/#)!±
*!

(37)

(Case 4 in table 4). This relation is believed to predict the friction factor in smooth pipes
to better than ³1±3% for Reynolds numbers between 10¬10$ and 35¬10'. Equation
(37) represents the subtleties of the mean velocity profile better than (36) and therefore
should be preferred.

The analysis performed with the friction factor data was repeated with the U
CL

}uτ

data. In figure 11, we plot U
CL

}uτ as a function of log (Reλ"/#). The error bars on the
data represent the uncertainty in our measurement of U

CL
}uτ (³0±55%). Also shown

in figure 11 is a curve-fit of the data determined by a least-squares approximation of
(29). For the curve shown, all data were used to determine the coefficients (Case 1 in
table 5). For comparison with the friction factor data, the same Reynolds number
ranges were analysed and the coefficients from the least-squares approximation are
given in table 5. Also given are the coefficients from an analysis of Nikuradse’s data for
two different Reynolds number ranges. The coefficients determined from our data
display smaller variations than the corresponding friction factor data shown in tables
3 and 4. This can be partly attributed to the fact that the coefficients in (29) are
independent of Reynolds number if the log-law constants are independent of Reynolds
number. The value of κ for Cases 2–5 in table 5 are within 0±001 of the corresponding
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F 12. The variation of the resistance coefficient ratio (equation (38)) with Reynolds number for
the coefficients given in (a) Case 4 of table 5, and (b) for the coefficients determined from the data
measured by Nikuradse (1932).

values in table 4. A review of tables 4 and 5 reveals that κ has a consistent value of
0±436³0±002.

For comparison with Θ, we define Θ
CL

as

Θ
CL

¯ 8 0 uτ

U
CL

1# [D
"
log (Reλ"/#)­D

#
]#, (38)

where Θ
CL

should have the same uncertainty as Θ (equation (33)). In figure 12(a) we
show the variation of Θ

CL
with Reynolds number using the coefficients determined for

Case 4 in table 5. The value of Θ
CL

appears to be randomly distributed within ³0±9%
of 1 which is less than the uncertainty of (U

CL
}uτ)# (³1±1%). Using the coefficients in

Case 4, a relationship for U
CL

}uτ can be written as

U
CL

}uτ ¯ 5±269 log (Reλ"/#)­3±742. (39)
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F 13. The variation of κ for successive Reynolds number groupings.

Series Reynolds Mean
number number range Reynolds number

1 31¬10$–410¬10$ 110¬10$

2 41¬10$–540¬10$ 150¬10$

3 56¬10$–750¬10$ 200¬10$

4 74¬10$–1±0¬10' 270¬10$

5 98¬10$–1±3¬10' 360¬10$

6 140¬10$–1±8¬10' 500¬10$

7 180¬10$–2±3¬10' 640¬10$

8 230¬10$–3±1¬10' 840¬10$

9 310¬10$–4±4¬10' 1±2¬10'

10 410¬10$–6±1¬10' 1±6¬10'

11 540¬10$–7±7¬10' 2±0¬10'

12 750¬10$–10¬10' 2±7¬10'

13 1±0¬10'–14¬10' 3±7¬10'

14 1±3¬10'–18¬10' 4±8¬10'

15 1±8¬10'–24¬10' 6±6¬10'

16 2±3¬10'–30¬10' 8±3¬10'

17 3±1¬10'–35¬10' 10¬10'

T 6. Reynolds number range of each series

Equation (39) should predict U
CL

}uτ to within ³0±55% for Reynolds numbers
between 31¬10$ and 35¬10'. By comparison with the friction factor data, we may
expect that the lower limit of (39) can be extended to 10¬10$ with no loss of accuracy.

A similar analysis was performed using Nikuradse’s data and the results are given
in table 5 and shown in figure 12(b). The value of κ in table 5 is consistent with the
value obtained from Nikuradse’s friction factor data when the full Reynolds number
range is analysed (e.g. κ¯ 0±407 from the friction factor data and κ¯ 0±415 from the
centreline velocity data), but if we neglect the data for Re! 100¬10$, then we find
κ¯ 0±440, which is very close to the value obtained using our new data, but different
than the value obtained from Nikuradse’s friction factor data (0.417). The
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inconsistency between Nikuradse’s friction factor and centreline velocity data must call
into question either the accuracy of his measurements or the existence of a log law. The
validity of the log law will be discussed in the next section. In figure 12(b), we show Θ

CL

as a function of Reynolds number from the analysis using Nikuradse’s entire data set.
Similar to the friction factor data, the standard deviation in these data is at least a
factor of three larger than for our data.

To this point, we have assumed that κ is independent of Reynolds number. In fact,
the data presented in this section can also be used to examine the Reynolds number
dependence of κ by determining C

"
and D

"
over a limited range of Reynolds numbers.

Since any Reynolds number dependence should be weak, it seems reasonable to analyse
series consisting of 10 consecutive Reynolds numbers which cover an order of
magnitude in R+ (and Reλ"/#). The ranges of Reynolds numbers analysed for each
series are given in table 6 along with a mean Reynolds number for each series. The
mean Reynolds number corresponds to the mean of the log of the maximum and
minimum Reynolds number in a series. For each series, κ was calculated from a least-
squares approximation using (25) and (29). The results are shown in figure 13.

The values of κ for most of the series are between 0±425 and 0±450 (0±438³0±013).
The scatter in κ derived from the U

CL
}uτ data is larger than the scatter in κ derived from

the friction factor data. There appears to be a similar trend in both data sets in that
κ has a minimum value between Series 9 and Series 11 (mean Reynolds number
between 1±2¬10' and 2±0¬10'). Although κ¯ 0±436 is in reasonable agreement with
the U

CL
}uτ data and friction factor data over the entire range of Reynolds numbers,

there may be a Reynolds number dependence over a limited range of Reynolds
numbers. To investigate the dependence further, we need to examine the mean velocity
profiles.

7. Velocity profile results : inner scaling

The velocity profiles normalized using inner scaling variables are shown in figure 14
for 13 different Reynolds numbers between 31¬10$ and 35¬10'. The profiles at
intermediate Reynolds numbers were omitted for clarity, but the trends observed at
intermediate Reynolds numbers are consistent with the ones shown. All profiles in
figure 14 do not extend to y+E 7, but each covers a range of y+ which is approximately
two orders of magnitude. Inspection of figure 14 indicates that the velocity profiles for
different Reynolds numbers are in good agreement where they overlap in y+. In the
core region, the scaling used in this graph is no longer appropriate, and the profiles
should not collapse onto a single curve. Also shown in figure 14 is a log law with κ¯
0±41 and B¯ 5±2. If the data in the core region and near-wall region (y+! 50) are
neglected, then there appears to be a range of y+ where this log law exists. However,
at the higher Reynolds numbers, where the existence of the log law is most likely, the
agreement between the log law shown and the data is poor.

These inconsistencies can be resolved by adjusting the limits of the log law from the
conventional limits of 50! y+! 0±15R+ to more restrictive limits. To establish these
limits, we define Ψ as

Ψ¯U+®
1

κ
ln y+, (40)

where Ψ should equal B in the logarithmic region. If a log law exists, then by plotting
Ψ versus the wall-normal positions a horizontal line should be evident provided that
κ was chosen correctly. If the wall-normal positions are scaled by inner layer variables,
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F 14. A comparison of the velocity profiles normalized using inner scaling variables for 13
different Reynolds numbers between 31¬10$ and 35¬10'.

then the near-wall limit of the log law (M
i
) should become apparent. If the wall-normal

positions are scaled by outer layer variables, then the core limit of the log law (M
o
)

should become apparent.
The value of Ψ was calculated using the value of κ determined from the friction

factor and centreline velocity data (κ¯ 0±436). Data for y}R! 0±01 were neglected in
this analysis due to the large uncertainty in position and the data at the very highest
Reynolds number were neglected due to the possibility of roughness effects (see figure
8). To determine the inner limit, the Ψ data at each y+ location were averaged. Data
for y}R"M

o
were neglected to prevent data in the core region, where Ψ"B, from

increasing the average at a given y+. To determine the outer limit, the Ψ data at each
y}R location were averaged. Data for y+!M

i
were neglected to prevent data in the

near-wall region, where Ψ!B, from reducing the average at a given y}R. The limits
were adjusted until a consistent value of Ψ was obtained for some intermediate region
given by M

i
ν}uτ ! y!M

o
R.

The results are shown in figure 15(a, b). The error bars shown correspond to the
standard error (95% confidence interval) at a given position. These error bars are
considerably smaller than the uncertainty in B for a single Reynolds number (³0±12)
(see figure 8). The large uncertainty in figure 8 is due primarily to the uncertainty in uτ

which has a fixed value at a given Reynolds number. When an average is taken over
multiple Reynolds numbers, the random error in uτ tends to cancel providing us with
a more accurate method to determine B. The values of Ψ shown in figure 15(a, b) are
averages for data at six to seventeen Reynolds numbers. Inspection of figures 15(a) and
15(b) shows that for 600ν}uτ ! y! 0±07R (600! y+! 0±07R+), Ψ has a constant value
of 6±15 in both figures.

Our proposed log-law limits are more restrictive than the commonly accepted limits
of 50ν}uτ ! y! 0±15R but are consistent with Millikan’s proposal in that a logarithmic
overlap region can only exist for ν}uτi yiR or 1i y+

iR+. These limits are also
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F 15. The difference between the velocity profile and the log law as a function of wall-normal
position for κ¯ 0±436. The value of Ψ was averaged over multiple Reynolds numbers. In (a) the wall-
normal positions are normalized using inner scaling variables, and in (b) outer scaling variables.

similar to the ones determined by George et al. (1997) (300! y+! 0±1R+) from a
simplified turbulence model. Accepting our proposed limits, a log law cannot exist for
R+! 600}0±07¯ 9¬10$ which corresponds to a pipe Reynolds number of 400¬10$.
It is doubtful that other experiments could have defined these limits since to observe
a log law over an order of magnitude in y+ requires data at a Reynolds number of
5¬10' which has only been obtained here and in the experiment by Dickinson (1975).

Critics of the log law often point to the Reynolds number dependence of the peak
in the Reynolds shear stress, which may occur in the log region, as evidence against the
existence of a log region. This criticism is based on the belief that if the log region is
truly an inertial region then the turbulence statistics must be independent of viscous
effects. We argue that the limits we propose resolve this apparent contradiction. An
equation for the Reynolds shear stress in the log region can be derived from the
streamwise momentum equation as

®u�+¯ 1®
y+

R+
®

1

κy+
, (41)

where ®u�+ is the Reynolds shear stress normalized by uτ. Equation (41) can be used
to show that the peak in ®u�+ occurs at

y+
p
¯ 01κR+1"/#. (42)

If a log law is not observed until R+E 9¬10$, then the location of the peak is
inconsequential since ®u�+E 1 and viscous effects are negligible. This is not the case
if we use the conventional limits for the log law since a log law would then exist at
R+E 50}0±15E 330 and

®u�+¯ 1®0 4

κR+1"
/#

¯ 0±83 (43)

if we let κ¯ 0±41. The proposed log-law limits are consistent with the streamwise
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F 16. The difference between the velocity profile and the log law as a function of wall-normal
position for different values of κ. The value of Ψ was averaged over multiple Reynolds numbers.

30

25

20

15

10

5

0
100 101 102 103 104 105

y+

U+

U+ = y+

U+ = 8.70(y+)0.137 U+ =
1

0.436 ln y+ + 6.15

F 17. A linear–log plot of the velocity profile data within 0±07R+ of the wall normalized
using inner scaling variables for 26 different Reynolds numbers from 31¬10$ to 35¬10'.

momentum equation while the previously accepted limits appear to create a
contradiction between the equations of motion and the overlap argument used to
derive the log law.

The new log-law limits were used to determine B for each Reynolds number. The
results are shown in figure 8 which is described in §5. The additive constant has an
average value of 6±15 with a standard error of ³0±02 when the highest Reynolds
number is neglected. No Reynolds number dependence is apparent except at the
highest Reynolds number and, as pointed out in §5, this may be caused by roughness.

So far we have assumed that κ¯ 0±436. In figure 16 we show Ψ for κ¯ 0±436³0±002
and ³0±004. The data for κ¯ 0±436 and κ¯ 0±438 form a horizontal line for y+" 600.
For κ¯ 0±438 the nominal value of B is 6±23. For the other values of κ, Ψ has either
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a positive or negative slope for y+" 600. It appears that κ¯ 0±436³0±002 is consistent
with the velocity profile data as well as the friction factor and resistance coefficient data
(U

CL
}uτ), and that B¯ 6±15³0±08 is consistent with the velocity profile data. The

uncertainty in B is due entirely to the uncertainty in κ. For a fixed value of κ, the
standard error in B is ³0±02.

For 600! y+! 0±07R+, the U+ data are well represented by a log law given by

U+¯
1

0±436
ln y+­6±15. (44)

A comparison between (44) and the data is shown in figure 17. The data measured at
the maximum Reynolds number were neglected in this figure and the size of the
symbols is equal to the uncertainty in U+ (³0±57%). The U+ data are within ³0±58%
(¯ 2¬standard deviation) of the log law shown for 600! y+! 0±07R+. The standard
deviation is approximately equivalent to the uncertainty in U+, indicating that the log
law is in excellent agreement with the data.

We have presented evidence that the correct values of κ and B are 0±436 and 6±15
which are significantly different than the widely accepted values of 0±41 and 5±2 (see
Brederode & Bradshaw 1974, for example). To investigate this discrepancy, we
determined Ψ as a function of y+ for κ¯ 0±41 using the same analysis used to produce
figures 15(a) and 16. The results are shown in figure 18. Also shown is the standard
error of Ψ (95% confidence interval). The value of Ψ is within ³0±1 of B¯ 5±2 for
50! y+! 1¬10$. The variation of Ψ is considerably larger than the standard error,
indicating a log law with this value of κ is not in good agreement with these data. If
we assume that the outer limit of the log law is given by the conventional value of
yE 0±15R, then this range of y+ corresponds to 300!R+! 7¬10$ or 9¬10$!Re!
300¬10$ which is the range of Reynolds numbers studied in most previous
investigations. We argue that previous investigators have assumed the existence of a
log law at these Reynolds numbers. Discrepancies between log-law constants have been
attributed to a Reynolds number dependence of the constants (incomplete similarity)
or experimental error, but it appears that these discrepancies are due to the fact that
the scaling in this region is not logarithmic.
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We believe that this region, which is closer to the wall than the log region and further
from the wall than the linear region, is better described by a power law than a log law
(Zagarola & Smits 1997). The power law is shown in figure 17. The local value of κ can
be evaluated from the slope of the power law using

κ¯ 0y+
dU+

dy+ 1
−"

. (45)

The value of κ varies from 0±49 to 0±36 for 50! y+! 500 which is consistent with the
variation observed by many previous investigators (Hinze 1964), and helps explain why
previous investigators have noted a Reynolds number dependence of the log-law
constants.

Finding the empirical constants and the limits of a power law are more difficult than
for the log law since neither of the constants is readily determined from the friction
factor data. The inner limit of the power law should scale on inner layer variables, but
the outer limit may scale on inner or outer layer variables depending on whether the
Reynolds number is large enough for a logarithmic overlap region to exist. From
inspection of figure 17, the inner limit of the power law appears to be at y+E 50 or 60.
At Reynolds numbers sufficiently large for a log law to exist (R+E 9¬10$), we may
expect that the outer limit of the power law region is equivalent to the inner limit of
the log law (y+E 600). At lower Reynolds numbers, we expect viscous effects and the
power law scaling to extend beyond where the outer limit of the log law is located
(y+E 0±07R+). We can take y+¯ 0±15R+ as a first approximation since it is the
conventional outer limit of the log law.

The empirical constants in the power law were determined using a least-squares
approximation for the region given by 60! y+! 500 or 0±15R+. The data for 500!
y+! 600 are inconsistent with the power law scaling, and we believe that this region
is a transition region between the power law and log law. In figure 19 we plot the U+

data in log–log coordinates in order to emphasize the power law dependence. The
power law is given by

U+¯ 8±70(y+)!±
"$(. (46)

The U+ data are within ³0±72% (¯ 2¬standard deviation) of (46) for 60! y+! 500
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or 0±15R+ which is commensurate with the uncertainty in U+ (³0±57%). The
multiplicative constant and the exponent in (46) are very close to the values (8±74,
1}7¯ 0±143) that Prandtl derived (see Durand 1943) from the Blasius friction factor
relation (equation (32)) using the assumption U{ ¯ 0±8U

CL
, and which Nikuradse

(1932) showed were in good agreement with his low Reynolds number data.
In figure 20, we show the outer limit of the power law as a function of R+. The outer

limit was determined as the point where the uncertainty intervals of the U+ data no
longer overlap (46). The outer limit appears to depend on Reynolds number for R+!
6¬10$, and above this value, it appears to be independent of Reynolds number and
constant at approximately y+E 500. For R+! 2±7¬10$, the outer limit is in reasonable
agreement with y+¯ 0±15R+. For 2±7¬10$!R+! 5¬10$, the power law appears to
extend considerably further into the outer region (yE 0±3R to 0±6R) than for the other
Reynolds numbers. We believe that this anomaly occurs because the slope of the
velocity profile at the outer limit of the power law, which depends on R+, coincides with
the slope near the inner limit of the outer region at these Reynolds numbers. We do not
believe that the extension of the power law this far from the wall is indicative of a
viscous dependence.

8. A new scaling argument for the inner region

The existence of a power law implies that viscosity is still an important parameter for
y+! 500. The viscous dependence suggests that this region is part of the inner region,
but since the Reynolds number must be quite large for this region to exist, it could also
be an overlap region exhibiting incomplete similarity (Zagarola & Smits 1997). The
lowest Reynolds number where the power law exists is ReE 13¬10$ (R+E 400). The
existence of an overlap region at this Reynolds number is supported by the
investigation by Patel & Head (1969) in which they observed an overlap region for
Re" 10$. They concluded that the overlap region was logarithmic, but it is doubtful
that the scaling could be determined at such low Reynolds numbers.

It could also be argued that at sufficiently high Reynolds numbers the power law
becomes the log law. This scenario is consistent with Prandtl’s speculation (see Durand
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1943), but it does not appear to be the case. The highest Reynolds number where the
velocity profile exhibits a power law dependence is Re¯ 2±3¬10' (R+¯ 42¬10$), and
the lowest Reynolds number that exhibits a log law dependence is Re¯ 410¬10$

(R+¯ 8±5¬10$), so there are surveys at seven different Reynolds numbers that exhibit
both a log and power law region. Note that Prandtl’s proposal would be consistent
with our observations if the Reynolds number dependence in Prandtl’s argument was
replaced with a y+ dependence.

Here we postulate a reason for the existence of two overlap regions, one which scales
as a power law and one which scales as a log law. In §1, the scaling laws for the mean
velocity profile were presented in the form originally proposed by Prandtl (near-wall
region), von Ka! rma! n (outer region) and Millikan (overlap region). The inner scaling
law is repeated here in its original form:

U+¯ f(y+). (47)

The outer scaling law can be written in an alternative form as

U
CL

®U

u
o

¯ g(η), (48)

where u
o

is the velocity scale in the outer region.
Equations (47) and (48) are based on the assumption that R+ is large enough for both

regions to be independent of Reynolds number. If we assume that an intermediate
region exists where both scaling laws are valid, then we can define two different
matching conditions. By matching the velocity gradients given by (47) and (48), we find

y+f «¯®Ληg« (49)

where the differentiation in (49) is with respect to the dependent variables and Λ is the
ratio of the outer to inner velocity scales, u

o
}uτ. If u

o
¯ uτ, then (49) is the same relation

used by Millikan to derive the classical logarithmic overlap region.
Alternatively, if we simultaneously match the velocities and velocity gradients, the

matching condition is

y+
f «
f

¯®
ηg«

(U
CL

}u
o
)®g

. (50)

Equation (50) is the same relation used by George et al. (1996) with u
o
¯U

CL
to

support their assertion that the overlap region in boundary layers is given by a power
law at sufficiently high Reynolds numbers.

We argue that at low Reynolds number, but still high enough that an overlap region
exists, Λ is a function of R+. At these Reynolds numbers, (49) does not define an
overlap region that is independent of R+, but (50) does. From (50), the differential
equation can be written in terms of inner scaling variables as

y+
f «
f

¯γ, (51)

where γ is an unknown but fixed constant. The fixed value of γ is a consequence of the
assumption of Reynolds number independence of the inner and outer regions.
Therefore, it is an asymptotic result that could be modified if the assumptions
regarding the scaling of the inner and outer regions were relaxed or shown to be
incorrect by experiment. Our observations provide no basis for this approach.
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Equation (51) can be integrated from the inner limit of this overlap region to some
distance y+ to give

U+¯C
"
(y+)γ, (52)

where the constant C
"

should be independent of R+ if the inner integration limit is
independent of Reynolds number, and it appears to be (see figure 19). An equation
equivalent to (51) can be written in terms of outer scaling variables. When integrated
from the outer limit of the power law, the result is

U
CL

®U

u
o

¯
U

CL

u
o

®C
#
ηγ (53)

or
U

u
o

¯C
#
ηγ, (54)

where C
#
appears to depend on Reynolds number since the outer limit of the power law

scales on inner layer variables at high Reynolds numbers (see figure 20).
At sufficiently high Reynolds numbers, we argue that u

o
}uτ approaches a finite limit.

For this case, (49) also gives an overlap region which is independent of Reynolds
number. Equation (49) can be set equal to an empirical constant (typically 1}κ) and
integrated to give the classical log law which can be written in terms of both inner and
outer scaling variables ((6) and (7)).

The transition from a power law to a log law can be interpreted as γ demonstrating
a y+ dependence (not a Reynolds number dependence specifically) over a relatively
short interval in y+. To illustrate this point, in figure 21 we plot y+dU+}dy+ as a
function of y+ using log–log coordinates. If the functional dependence in the overlap
region is a log law, then y+dU+}dy+ is equal to a constant (¯ 1}κ, see (49)). If the
functional dependence in the overlap region is a power law, then log (y+dU+}dy+) is
a linear function of log y+ with slope equal to γ. Figure 21 shows that the change from
a power law to a log law occurs relatively abruptly in y+.

Also shown in figure 21 are the recent overlap proposals by George et al. (1997) and
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Barenblatt (1993). Both proposals presume a smooth or gradual variation of the
scaling in the overlap region. The proposal by George et al. presumes a smooth
variation of y+dU+}dy+ with y+. The proposal by Barenblatt presumes a smooth
variation of C

"
and γ with Reynolds numbers. The variation of y+dU+}dy+ at four

different Reynolds number is shown in figure 21. These proposals clearly differ in spirit
from the proposal given here. Despite the abrupt change in scaling, we note that the
entire overlap region in our model is still described only in terms of classic inner and
outer scales. The functional dependence is observed to change, but the power-law and
log-law regions should not be thought of as two separate overlap regions because they
share the same scaling variables.

For our overlap proposal to be valid, u
o
must be proportional to uτ at high Reynolds

number. From our analysis, it appears that a reasonable candidate for u
o

is U
CL

®U{ ,
which is a true outer velocity scale, in contrast to uτ, which is a velocity scale associated
with the near-wall region which is ‘ impressed’ on the outer region. Figure 22 shows the
variation of (U

CL
®U{ )}uτ with Reynolds number. At Reynolds numbers less than

C 300¬10$, u
o
}uτ is a function of Reynolds number, but at high Reynolds numbers,

u
o
}uτ is independent of Reynolds number (i.e. u

o
}uτ ¯ constant). For Reynolds

numbers greater than 300¬10$, the error bounds for all data overlap a horizontal line
at (U

CL
®U{ )}uτ ¯ 4±34. If U

CL
®U{ is the correct outer velocity scale, then it should

collapse the velocity profiles in the outer region for different Reynolds numbers onto
a single curve. A comparison between the velocity profiles in the outer region scaled by
U

CL
®U{ and uτ is given in §9.

9. Velocity profile results : Outer scaling

In figure 23(a, b) we plot the velocity profiles scaled by uτ and U
CL

®U{ for seven
different Reynolds numbers between 31¬10$ and 35¬10'. When the velocity profiles
are scaled by uτ, the profiles do not collapse onto a single curve. The poor collapse is
particularly evident for 0±07! y}R! 0±30 which is part of the overlap or core region
depending on the Reynolds number. When using U

CL
®U{ to scale the profiles (figure

23b), the collapse of the profiles is much improved for y}R" 0±10. For both scalings,
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the collapse in the overlap region is not very satisfactory. For low Reynolds numbers,
this behaviour should be expected because an overlap region which is independent of
Reynolds number (log law) does not exist for Re! 400¬10$.

The difference between the velocity scales is more evident at low Reynolds numbers
since at high Reynolds numbers the scales are proportional. Therefore, in figure
24(a, b) we plot the velocity profiles normalized by uτ and U

CL
®U{ , respectively, for all

Reynolds numbers investigated between 31¬10$ and 540¬10$. A comparison between
the figures 24(a) and 24(b) indicates that the data scaled by U

CL
®U{ are in much better

agreement for y}R" 0±07 than the data scaled by uτ. The only profile that is not in
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good agreement with the others is that at the lowest Reynolds number, 31¬10$, which
may indicate that the data near y}RE 0±1 (y+E 100) scales on inner layer variables.
This is consistent with our observation that the outer limit of the power law extends
to yE 0±15R at low Reynolds numbers. For Reynolds numbers between 31¬10$ and
540¬10$, it appears that U

CL
®U{ is a better outer velocity scale than uτ.

To extend our comparison to Reynolds numbers lower than we investigated, we use
the data measured by Toonder & Nieuwstadt (1997). In figure 25(a, b) their velocity
profiles are shown normalized by uτ and U

CL
®U{ , respectively, for four Reynolds

numbers between 4±9¬10$ and 25¬10$. The collapse is poor for all Reynolds numbers



72 M. V. Zagarola and A. J. Smits

18

12

6

0

4.9 × 103

10 × 103

18 × 103

25 × 103

Re(a)

(U
C

L
 –

 U
)/

 u
s

4

3

2

1

0
0.01 0.1 1

y /R

(b)

(U
C

L
 –

 U
)/

(U
C

L
 –

 U
)

F 25. A comparison between the velocity profiles normalized by (a) uτ and (b) U
CL

®U{ for
Reynolds numbers between 4±9¬10$ and 25¬10$. The data are from Toonder & Nieuwstadt
(1997).

when normalized by uτ. When normalized by U
CL

®U{ , the collapse is excellent for the
two highest Reynolds numbers, Re¯ 18¬10$ and 25¬10$, but it is less good for the
two lowest Reynolds numbers, Re¯ 4±9¬10$ and 10¬10$. This behaviour is expected
because our analysis of the near-wall region indicates that an overlap region, a power
law here, does not exist until Re" 13¬10$, so we may expect that complete similarity
does not exist in the near-wall and core regions until this Reynolds number is exceeded.

Toonder & Nieuwstadt also measured turbulence quantities which may be used to
further evaluate the proposed outer velocity scale. The large-scale streamwise motions
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should depend on the same outer velocity scale as the mean velocity profile. Since these
motions contain most of the energy, we may expect that the root-mean-squared
fluctuating velocity u

rms
scales on outer layer variables in the core region (see Perry &

Abell 1975, for example). In figure 26(a, b) the u
rms

profiles are shown normalized by
uτ and U

CL
®U{ . The collapse is poor for all Reynolds numbers when normalized by uτ.

When normalized by U
CL

®U{ , the collapse is much improved for 0±2! y}R! 1 for the
three highest Reynolds numbers, and for 0±4! y}R! 1 for the lowest Reynolds
number. Note the improved collapse near the centreline when normalized by U

CL
®U{ .
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This comparison may be more persuasive support of the proposed outer velocity scale
than the comparisons using the mean velocity profiles. For the mean velocity profiles,
the collapse near the centreline is insensitive to the choice of velocity scale since the
velocity defect approaches zero at this point independent of our choice of velocity
scale.

10. A new scaling argument for the outer region

At high Reynolds number, a log law should be apparent when the profiles are scaled
by outer layer variables. To determine the additive constant in the log law, B*, we
assumed that κ¯ 0±436 which was shown to be consistent with the friction factor and
centreline velocity data (§6), and velocity profiles when scaled by inner layer variables
(§7). Next, for each Reynolds number, B* was calculated for each data point in the
logarithmic region which was shown to exist for 600}R+! y}R! 0±07 (§7). The data
points near the wall (y}R! 0±01) were neglected due to the relatively large uncertainty
in their positions, and only Reynolds numbers with at least six data points in the
assumed logarithmic region were analysed. At the higher Reynolds numbers, 15 data
points were in the assumed log region.

The values of B* at each Reynolds number were averaged (no-weighting) and the
results are shown in figure 27. Also shown is an estimate for the uncertainty in B*
which is nominally ³0±11. B* has an approximately constant value of 1±51 with a
standard error of 0±03 (95% confidence interval) for Reynolds numbers greater than
750¬10$. A similar analysis was performed using U

CL
®U{ as the velocity scale. The

additive constant becomes B*}Λ which has a value of 0±348³0±004, and the slope
becomes 1}κΛ which has a value of 1}(1±89³0±01).

For regions between 600}R+! y}R! 0±07, a logarithmic overlap appears to exist
which can be accurately represented by

U
CL

®U

U
CL

®U{ ¯
1

1±89
ln η­0±348 (55)
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or
U

CL
®U

uτ

¯
1

0±436
ln η­1±51. (56)

The velocity profile data are within ³1±5% (95% confidence interval) of (55) and (56).
The relatively large uncertainty can be attributed to the uncertainty in U

CL
®U which

is the difference between two large numbers and consequently has a large uncertainty.
In figure 28(a, b) equations (56) and (55) are compared with the velocity profile data

for Reynolds numbers between 3±1¬10' and 35¬10'. For this range of Reynolds
numbers, a log law should exist all the way to y}R¯ 0±01 since at the lowest Reynolds
shown (R+¯ 55¬10$), the inner limit of the log law is at y+}R+¯ 600}55¬10$E 0±01,
the origin for y}R. In figure 29(a) the velocity profiles are scaled by uτ and in figure
28(b) they are scaled by U

CL
®U{ . The outer limit of the log law is approximately y}R

E 0±07 in both figures which is consistent with our findings in §7. The agreement
between the log law with the appropriate constants and the data is equally good for
both figures, and it appears that at high Reynolds numbers the outer velocity scales are
equivalent.
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We have proposed a new velocity scale for the outer region which appears to better
collapse the velocity profile data than the scale proposed by von Ka! rma! n. The new
outer scale is consistent with the scaling in the overlap and core regions. To further
support our claim, in figure 29 we show the mean velocity profiles normalized by the
average velocity for all 26 Reynolds numbers. The point where the velocity equals the
average velocity is independent of Reynolds number and occurs at a location where
y
!
E 0±25R or η

!
E 0±25. From our analysis this point is located in the outer region

where the scaling given by (48) should hold. At the point where U¯U{ , (48) gives

U
CL

®U{

U
CL

®U{ ¯ 1¯ g(η
!
) (57)

and η
!

must be independent of Reynolds number. Figure 29 provides additional
support for the proposed outer scaling. The new outer velocity scale can be linked to
the well-documented 1}4-radius point that had been thought to lie in the log region (see
Tennekes & Lumley 1972). It would appear that a one-point measurement is all that
is required to accurately determine the average velocity in a fully developed smooth
pipe flow for over three orders of magnitude in Reynolds numbers (13¬10$!Re!
35¬10').

It seems logical to extend this scaling argument to boundary layers. The outer
velocity scale, U

CL
®U{ , is proportional to the mass flux deficit in the pipe. For a

boundary layer, an equivalent outer velocity scale is given by

u
o
¯U

e
®U{ ¯U

e&"

!

01®
U

U
e

1d 0yδ1¯U
e

δ*

δ
, (58)

where U
e

is the velocity at the edge of the boundary layer, δ* is the displacement
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thickness and δ is the boundary layer thickness. A noteworthy feature of this new scale
is that it can be accurately determined from the velocity profiles, in contrast to uτ which
is not easily measured in a boundary layer. At high Reynolds numbers, we can expect
that δ*}δCC

f
"/#, where C

f
is the skin friction coefficient given by

C
f
¯ 2(uτ}U

e
)#, (59)

for a logarithmic overlap region to exist. A comparison of this theory with experimental
boundary layer data is left for future work, but in the light of our success for pipe
flow, we believe that this scale is the correct scale for the outer region of boundary
layers, and we are currently preparing a comparison with data.

11. Conclusions

An experimental investigation was conducted to determine the mean-flow scaling in
a fully developed, smooth pipe flow. A new friction factor relation was proposed which
is similar to Prandtl’s, but has different constants and includes an additional term to
account for the near-wall velocity profile. This new relation accurately represents the
subtleties of the mean velocity profiles.

At small values of R+, but which are large enough that an overlap region exists, the
mean velocity profile in the overlap region is given by a power law. The power law
exists in a discrete region between the inner region and outer region or logarithmic
overlap region, depending on the magnitude of the Reynolds number, and the
empirical constants in the power law do not depend on Reynolds number when
expressed using inner scaling variables. We argue that this region is not the overlap
region expected at very large Reynolds number, but an intermediate overlap region
that covers the range of y+ at which most previous experiments have been performed.
At very large Reynolds number, another overlap region is apparent, and the scaling in
this region appears to be logarithmic. The log law is only evident if the pipe Reynolds
number is greater than approximately 400¬10$.

A new theory was developed to explain the scaling in both overlap regions. This
theory requires a velocity scale for the outer region such that the ratio of the outer
velocity scale to the inner velocity scale (the friction velocity) is a function of Reynolds
number at low Reynolds numbers, and approaches a constant value at high Reynolds
numbers. The proposed velocity scale was used to normalize the velocity profiles in the
outer region and was found to give significantly better agreement between different
Reynolds numbers than the friction velocity. The proposed velocity scale was also used
to normalize the u

rms
profiles measured by Toonder & Nieuwstadt (1997) and was

found to give significantly better agreement between different Reynolds numbers than
the friction velocity.

The new outer velocity scale presented here was established for a pipe flow. For
similar values of R+, we may expect channel flow and boundary layers to scale the same
way as pipe flow. An equivalent outer velocity scale for a boundary layer is given by
u
o
¯U

e
δ*}δ. At high Reynolds numbers, δ*}δ should be proportional to C

f
"/# for a

logarithmic overlap region to exist.

Discussions with V. Yakhot, S. A. Orszag, A. E. Perry, D. Coles and P. Bradshaw
were very helpful in preparing this manuscript. The support of ARPA}ONR under
Grant N00014-92-J-1796 is gratefully acknowledged.
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